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Abstract. This work presents a robust normalization technique by cas-
cading a speech enhancement method followed by a feature vector nor-
malization algorithm. To provide speech enhancement the Spectral Sub-
traction (SS) algorithm is used; this method reduces the effect of additive
noise by performing a subtraction of the noise spectrum estimate over
the complete speech spectrum. On the other hand, an empirical fea-
ture vector normalization technique known as PD-MEMLIN (Phoneme-
Dependent Multi-Enviroment Models based LInear Normalization) has
also shown to be effective. PD-MEMLIN models clean and noisy spaces
employing Gaussian Mixture Models (GMMs), and estimates a set of
linear compensation transformations to be used to clean the signal. The
proper integration of both approaches is studied and the final design, PD-
MEEMLIN (Phoneme-Dependent Multi-Enviroment Enhanced Models
based LInear Normalization), confirms and improves the effectiveness of
both approaches. The results obtained show that in very high degraded
speech PD-MEEMLIN outperforms the SS by a range between 11.4% and
34.5%, and for PD-MEMLIN by a range between 11.7% and 24.84%. Fur-
themore, in moderate SNR, i.e. 15 or 20 dB, PD-MEEMLIN is as good
as PD-MEMLIN and SS techniques.

1 Introduction

The robust speech recognition field plays a key rule in real environment appli-
cations. Noise can degrade speech signals causing nocive effects in Automatic
Speech Recognition (ASR) tasks. Even though there have been great advances
in the area, robustness still remains an issue. Noticing this problem, several tech-
niques have been developed over the years, for instance the Spectral Subtraction
algorithm (SS) [1]; and in the last decade, SPLICE (State Based Piecewise Lin-
ear Compensation for Enviroments) [2], PMC (Parallel Model Combination) [3],
RATZ (multivariate Gaussian based cepstral normalization) [4] and RASTA (the
RelAtive SpecTrAl Technique) [5]. The research that followed this evolution was
to make a proper combination of algorithms in order to reduce the noise ef-
fects. For example, a good example is described in [6], where the core scheme is
composed of a Continuous SS (CSS) and PMC.
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Persuing the same idea, a combination of the speech enhanced signal (rep-
resented by the SS method) and a feature vector normalization technique (PD-
MEMLIN [7]) are presented in this work to improve the recognition accuracy of
the speech recognition system in highly degraded environments [8, 9]. The first
technique was selected because of its implementation simplicity and good perfor-
mance. The second one is an empirical vector normalization technique that has
been compared against some other algorithms [8] and has obtained important
improvements.

The organization of the paper is as follows. In Section 2, a brief overview of
the SS and PD-MEMLIN. Section 3 details the new method PD-MEEMLIN. In
Section 4, the experimental results are presented. Finally, the conclusions are
shown in Section 5.

2 Spectral Subtraction and PD-MEMLIN

In order to evaluate the proposed integration, an ASR system is employed. In
general, a pre-processing stage of the speech waveform is always desirable. The
speech signal is divided into overlaped short windows, from which a set of coeffi-
cients, usually Mel Frequency Cepstral Coefficients (MFCCs)[10], are computed.
The MFCCs are feeded to the training algorithm that calculates the acoustic
models. The acoustic models used in this research are the Hidden Markov Mod-
els (HMMs), which are widely used to model statistically the behaviour of the
phonetic events in speech [10]. The HMMs employ a sequence of hidden states
which characterises how a random process (speech in this case) evolves in time.
Although the states are not observable, a sequence of realizations from these
states can always be obtained. Associated to each state there is a probability
density function, normally a mixture of Gaussians. The criteria used to train
the HMMs is the Maximum Likelihood, thus, the training process becomes an
optimization problem that can be solved iteratively with the Baum and Welch
algorithm.

2.1 Spectral Subtraction

The Spectral Subtraction (SS) algorithm is a simple and known speech enhance-
ment technique. This research is based on the SS algorithm expressed in [9]. It
has the property that it does not requiere the use of an explicit voice activity
detector, as general SS algorithms does. The algorithm is based on the existance
of peaks and valleys in a short noisy speech time subband power estimate [9].
The peaks correspond to the speech activity and the valleys are used to obtain
an estimate of the subband noise power. So, a reliable noise estimation is ob-
tained using a large enough window that can pemit the detection of any peak of
speech activity.

As shown in Figure 1, this algorithm performs a modification of the short time
spectral magnitude of the noisy speech signal during the process of enhancement.
Hence, the output signal can be considered close to the speech clean signal when
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synthesized. The appropriate computation of the spectral magnitude is obtained
with the noise power estimate and the SS algorithm. Let, y(i) = x(i)+n(i), where

Fig. 1. Diagram of the Basic SS Method Used

y(i) is the noisy speech signal, x(i) is the clean speech signal, n(i) is the noise
signal and i denotes the time index, x(i) and n(i) are statistically independent.

Figure 1 depicts the spectral analysis in which the frames in the time do-
main data are windowed and converted to frequency domain using the Discrete
Fourier Transform (DFT) filter bank with WDFT subbands and with a decima-
tion/interpolation ratio named R [9]. After the computation of the noise power
estimation and the spectral weightening, the enhanced signal can be transformed
back to the time domain using the Inverse Discrete Fourier Transform (IDFT).

For the subtraction algorithm it is necessary to estimate the subband noise
power Pn(λ, k) and the short time signal power |Y (λ, k)|2, where λ is the deci-
mated time index and k are the frequency bins of the DFT. A first order recursive
network is used to obtain a short time signal power as shown in Equation 1.

|Y (λ, k)|2 = γ ∗ |Y (λ − 1, k)|2 + (1 − γ) ∗ |Y (λ, k)|2. (1)

Afterwards, the subtraction algorithm is accomplished using an oversubtrac-
tion factor osub(λ, k) and a spectral flooring constant (subf) [12]. The osub(λ, k)
factor is needed to eliminate the musical noise, and it is calculated as a function
of the subband Signal to Noise Ratio SNRy(λ, k), λ and k (for a high SNR and
high frequencies less osub factor is required, for low SNR and low frequencies the
osub is less). The subf constant helps the resultant spectral components from
going below a minimum level. It is expressed as a fraction of the original noise
power spectrum. The final relation of the spectral subtraction between subf and
osub is defined by Equation 2.

|X̂(λ, k)| =

{√

subf ∗ Pn(λ, k) if |Y (λ, k)| ∗ Q(λ, k) ≤
√

subf ∗ Pn(λ, k)
|Y (λ, k)| ∗ Q(λ, k) otherwise

(2)

where Q(λ, k) = (1 −
√

osub(λ, k) Pn(λ,k)

|Y (λ,k)|2
).

The missing element, Pn(λ, k), is computed using the short subband signal power
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Py(λ, k) in a representation based on smoothed periodograms, as denoted by
Py(λ, k) = ξ ∗Py(λ−1, k)+(1− ξ)∗ |Y (λ, k)|2 where ξ represents the smoothing
constant to obtain the periodograms. Then, Pn(λ, k) is calculated as a weighted
minimum of Px(λ, k) in a window of D subband samples. Hence,

Pn(λ, k) = omin · Pmin(λ, k), (3)

where Pmin(λ, k) denotes the estimated minimum power and omin is a bias
compensation factor. The data window D is divided into W windows of length
M, allowing to update the minimum every M samples without time consuming.
This noise estimator combined with the spectral subtraction has the ability
to preserve weak speech sounds. If a short time subband power is observed,
the valleys correspond to the noisy speech signal and are used to estimate the
subband noise power.

The last element to be calculated is the SNRy(λ, k) in Equation 4 that
controls the oversubtraction factor osub(λ, k).

SNRy(λ, k) = 10log

(

Py(λ, k) − min(Pn(λ, k), Py(λ, k))

Pn(λ, k)

)

(4)

Up to this stage osub(λ, k) and subf can be selected and the spectral substraction
algorithm can be computed.

2.2 PD-MEMLIN

PD-MEMLIN is an empirical feature vector normalization technique which uses
stereo data in order to estimate the different compensation linear transforma-
tions in a previous training process. The clean feature space is modelled as a
mixture of Gaussians for each phoneme. The noisy space is split in several ba-
sic acoustic environments and each environment is modelled as a mixture of
Gaussians for each phoneme. The transformations are estimated for all basic
environments between a clean phoneme Gaussian and a noisy Gaussian of the
same phoneme.

PD-MEMLIN approximations Clean feature vectors, x, are modelled using
a GMM for each phoneme, ph

pph(x) =
∑

s
ph
x

p(x|sph
x )p(sph

x ), (5)

p(x|sph
x ) = N(x;µ

s
ph
x

, Σ
s

ph
x ), (6)

where µ
s

ph
x

, Σ
s

ph
x

, and p(sph
x ) are the mean vector, the diagonal covariance ma-

trix, and the a priori probability associated with the clean model Gaussian sph
x

of the ph phoneme.
Noisy space is split into several basic environments, e, and the noisy feature

vectors, y, are modeled as a GMM for each basic environment and phoneme
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pe,ph(y) =
∑

s
e,ph
y

p(y|se,ph
y )p(se,ph

y ), (7)

p(y|se,ph
y ) = N(y;µ

s
e,ph
y

, Σ
s

e,ph
y

), (8)

where se,ph
y denotes the corresponding Gaussian of the noisy model for the e

basic environment and the ph phoneme; µ
s

e,ph
y

, Σ
s

e,ph
y

, and p(se,ph
y ) are the mean

vector, the diagonal covariance matrix, and the a priori probability associated
with se,ph

y .
Finally, clean feature vectors can be approximated as a linear function, f ,

of the noisy feature vector for each time frame t which depends on the basic
environments, the phonemes and the clean and noisy model Gaussians: x ≈
f(yt, s

ph
x , se,ph

y ) = yt−r
s

ph
x ,s

e,ph
y

, where r
s

ph
x ,s

e,ph
y

is the bias vector transformation

between noisy and clean feature vectors for each pair of Gaussians, sph
x and se,ph

y .

PD-MEMLIN enhancement With those approximations, PD-MEMLIN trans-
forms the Minimum Mean Square Error (MMSE) estimation expression, x̂t =
E[x|yt], into

x̂t = yt−
∑

e

∑

ph

∑

s
e,ph
y

∑

s
ph
x

r
s

ph
x ,s

e,ph
y

p(e|yt)p(ph|yt, e)p(se
y|yt, e, ph)p(sph

x |yt, e, ph, se
y),

(9)
where p(e|yt) is the a posteriori probability of the basic environment; p(ph|yt, e) is
the a posteriori probability of the phoneme, given the noisy feature vector and the
environment; p(se,ph

y |yt, e, ph) is the a posteriori probability of the noisy model

Gaussian, se,ph
y , given the feature vector, yt, the basic environment, e, and the

phoneme, ph. To estimate those terms: p(e|yt), p(ph|yt, e) and p(se,ph
y |yt, e, ph),

(7) and (8) are applied as described in [8]. Finally, the cross-probability model,
p(sph

x |yt, e, ph, se,ph
y ), which is the probability of the clean model Gaussian, sph

x ,
given the feature vector, yt, the basic environment, e, the phoneme, ph, and the
noisy model Gaussian, se,ph

y , and the bias vector transformation, r
s

ph
x ,s

e,ph
y

, are

estimated in a training phase using stereo data for each basic environment and
phoneme [8].

3 PD-MEEMLIN

By combinig both techniques, PD-MEEMLIN arises as an empirical feature
vector normalization which estimates different linear transformations as PD-
MEMLIN, with the special property that a new enhanced space is obtained by
applying SS to the noisy speech signal. Furthermore, this first-stage enhance-
ment produces that the noisy space gets closer to the clean one, making the gap
smaller among them. Figure 2 shows PD-MEEMLIN architecture.

Next, the architecture modules are explained:
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– The SS-enhancement of the noisy speech signal is performed, |X̂(λ, k)|,
Pn(λ, k) and SNRy(λ, k) are calculated.

– Given the clean speech signal and the enhanced noisy speech signal, the clean
and noisy-enhanced GMMs are obtained.

– In the testing stage, the noisy speech signal is also SS-enhanced and then
normalized using PD-MEEMLIN.

– These normalized coefficients are forwarded to the decoder.

Fig. 2. PD-MEEMLIN Architecture.

4 Experimental Results

All the experiments were performed employing the AURORA2 database [13],
clean and noisy data based on TIDigits. Three types of noises were selected:
Subway, Babble and Car from AURORA2, that go from -5dB to 20dB SNR. For
every SNR the SS parameters osub and subf needs to be configured. The param-
eter osub takes values from 0.4 to 4.6 (0.4 for 20dB, 0.7 for 15dB, 1.3 for 10dB,
2.21 for 5dB, 4.6 for 0dB and 4.6 for -5dB) and subf values 0.03 or 0.04 (all SNR
levels except 5dB optimised for 0.04). The phonetic acoustic models employed
by PD-MEEMLIN are obtained from 22 phonemes and 1 silence. The models
set is represented by a mixture of 32 Gaussians each. Besides, two new sets of
each noise were used, PD-MEEMLIN needs one to estimate the enhanced-noisy
model, and onother to obtain the normalized coefficients. The feature vectors
for the recognition process are built by 12 normalized MFCCs followed by the
energy coefficient, its time-derative ∆ and the time-acceleration ∆∆. For the
training stage of the ASR system, the acoustic models of 22 phonemes and the
silence consist on a three-state HMMs with a mixture of 8 Gaussians per state.
The combined techniques show that for low noise conditions i.e. SNR=10, 15 or
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20 dB, the difference between the original noisy space and the one approximated
to the clean is similar. However, when the SNR is lower (-5dB or 0dB) the SS
improves the performance of PD-MEMLIN. Comparing the combination of SS
with PD-MEMLIN against the case where no techniques are applied, a signifi-
cant improvement is shown. The results described before are presented in Tables
1, 2 and 3. The Tables show ”Sent” that means complete utterances percent-

Table 1. Comparative Table for the ASR working with Subway Noise.

Subway ASR ASR+SS ASR+PD-MEMLIN ASR+PD-MEEMLIN
SNR Sent % Word % Sent % Word % Sent % Word % Sent % Word %

-5dB 3.40 21.57 10.09 34.22 11.29 37.09 13.29 47.95
0dB 9.09 29.05 20.18 53.71 27.07 61.88 30.87 69.71
5dB 17.58 40.45 32.17 70.00 48.15 80.38 51.65 83.40
10dB 33.07 65.47 50.95 83.23 65.83 90.58 70.13 91.86
15dB 54.45 84.60 64.84 90.02 78.92 94.98 78.22 94.40
20dB 72.83 93.40 76.52 94.56 85.91 97.14 86.71 97.30

Table 2. Comparative Table for the ASR working with Babble Noise.

Babble ASR ASR+SS ASR+PD-MEMLIN ASR+PD-MEEMLIN
SNR Sent % Word % Sent % Word % Sent % Word % Sent % Word %

-5dB 4.60 23.08 7.59 29.78 8.49 29.54 6.69 37.79
0dB 11.29 30.41 15.98 44.49 23.48 55.72 20.08 59.50
5dB 20.58 44.23 30.37 65.11 48.75 80.55 49.25 83.70
10dB 40.86 72.85 50.25 80.93 74.93 94.20 69.33 91.48
15dB 69.03 90.54 69.93 90.56 84.12 96.86 81.32 95.54
20dB 82.42 96.17 83.52 95.84 88.91 98.09 88.01 97.98

Table 3. Comparative Table for the ASR working with Car Noise.

Car ASR ASR+SS ASR+PD-MEMLIN ASR+PD-MEEMLIN
SNR Sent % Word % Sent % Word % Sent % Word % Sent % Word %

-5dB 3.10 20.18 10.49 28.87 6.79 25.90 13.89 44.31
0dB 8.09 26.18 18.58 46.70 23.58 52.67 35.16 70.47
5dB 14.99 35.34 31.47 66.50 51.95 82.34 58.64 86.30
10dB 28.77 58.13 54.25 82.72 70.83 92.15 70.93 91.90
15dB 57.84 84.04 68.03 90.51 82.02 96.16 81.42 95.86
20dB 78.32 94.61 81.42 95.30 87.01 97.44 87.81 97.77

age correctly recognised, and ”Word” indicates the words percentage correctly
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recognised. The gap between the clean and the noisy model, for the very high
degraded speech, had been shortened due to the advantages of both techniques.
When PD-MEEMLIN is employed the performance is between 11.7% and 24.84%
better than PD-MEMLIN, and between 11.4% and 34.5% better than SS.

5 Conclusions

In this work a robust normalization technique, PD-MEEMLIN, has been pre-
sented by cascading a speech enhancement method (SS) followed by a feature
vector normalization algorithm (PD-MEMLIN). The results of PD-MEEMLIN
show a better performance than SS and PD-MEMLIN for a very high degraded
speech. This improvement is made by the enhancement of the noisy models
employed by PD-MEMLIN, which are close to the original clean model.
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